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SUMMARY
We integrate the genomics, proteomics, and phosphoproteomics of 480 clinical tissues from 146 patients in a
Chinese colorectal cancer (CRC) cohort, among which 70 had metastatic CRC (mCRC). Proteomic profiling
differentiates three CRC subtypes characterized by distinct clinical prognosis andmolecular signatures. Pro-
teomic and phosphoproteomic profiling of primary tumors alone successfully distinguishes cases with
metastasis. Metastatic tissues exhibit high similarities with primary tumors at the genetic but not the prote-
omic level, and kinase network analysis reveals significant heterogeneity between primary colorectal tumors
and their liver metastases. In vivo xenograft-based drug tests using 31 primary and metastatic tumors show
personalized responses, which could also be predicted by kinase-substrate network analysis no matter
whether tumors carrymutations in the drug-targeted genes. Our study provides a valuable resource for better
understanding of mCRC and has potential for clinical application.
INTRODUCTION

Colorectal cancer (CRC) is the fourth most deadly cancer world-

wide, with almost 900,000 deaths annually (Dekker et al., 2019).

Aging, unfavorable diet, and lifestyle all increase the risk of CRC

(Kuipers et al., 2015). CRC exhibits high heterogeneity (Allison

and Sledge, 2014; Punt et al., 2017), with molecularly defined

subgroups that differ in their prognosis. Previous studies in

TCGA and CPTAC colorectal cohorts have characterized multi-

omic features and molecular heterogeneity (Cancer Genome

Atlas, 2012; Guinney et al., 2015; Vasaikar et al., 2019; Zhang

et al., 2014). However, these studies focus more on non-meta-

static states in non-Asian populations (Imperiale et al., 2018;

Murphy et al., 2019; Simon et al., 2011; Tawk et al., 2015).

Despite the increasing advances in treatment, mortality from

CRC, especially frommetastatic CRC, remains high among can-

cer-related deaths (Bray et al., 2018; Dekker et al., 2019).
Currently, only DNA mismatch-repair status, RAS mutation,

and BRAF mutation status influence clinical decision-making

(Punt et al., 2017). Multi-omic characteristics anticipated to

contribute to improving therapy will thus lead to precise and

individualized care (Kuipers et al., 2015). The combination of

genomics and proteomics can provide additional insights, which

may not be deciphered by genomic analysis alone (Bhullar et al.,

2018; Wu et al., 2019).

Here, we present a global integration of genomics, prote-

omics, and phosphoproteomics in metastatic CRC from a

Chinese cohort. Integrated analyses of multi-omic data demon-

strated distinct proteomic and phosphoproteomic characteris-

tics for subtypes and metastasis. Kinase-substrate correlations

were identified as accurate indicators of drug response for

potential treatment. Collectively, the results of our study provide

a rich resource that contains promising targets and therapeutic

assessments for CRCs.
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Figure 1. Mutation Landscape of CCRC

(A) Genetic profile and associated clinicopathologic features of all 146 CCRC patients. Bar plot on the top indicates total number of somatic mutations in each

patient. Bar plot at the right represents the distribution and compositions of mutation types in each gene.

(B) Comparison of clinical characteristics among CCRC, TCGA, and MSK cohorts (Yaeger et al., 2018). The p values were calculated by chi-square test.

(C) Comparison of frequently mutated genes between CCRC, TCGA, and MSK cohorts. The p values were calculated by Fisher’s exact test.

(D) Comparison ofmutation burden between non-mCRCandmCRC. The p value was calculated by two-tailed Student’s t test. The line and box represent median

and upper and lower quartiles, respectively.

(E) Differentially mutated genes between non-mCRC and mCRC. The p values were calculated by Fisher’s exact test. **p < 0.01; ***p < 0.001.

(F) Clonal differences between non-mCRC and mCRC. The p value was calculated by chi-square test. M, mCRC; noM, non-mCRC. See also Figures S1–S3 and

Table S1.
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RESULTS

Overview of the Study
We applied multi-omics-based profiling to 146 Chinese patients

with CRC (CCRC) from Changhai Hospital (Shanghai, China),

including 70 metastatic CRC (mCRC) patients and 76 earlier-

stage non-metastatic CRC (non-mCRC) patients. Primary tumor

tissues (T), remote normal tissues (N), para-carcinoma tissues (P,

normal adjacent tissues), and matched peripheral blood cells

(BC) were obtained from each patient. For mCRC, 43 available

distant liver metastatic tissues (LM) were also studied. We per-

formed whole-exome sequencing (WES) on 330 samples (Fig-

ure S1), including paired primary tumor and peripheral BC sam-

ples (128 T-BC pairs) or N (18 T-N pairs), and 38 DNA quality-

controlled LMs. Hybrid spectral libraries of CCRC proteome or

CCRC phosphoproteome were generated by MaxQuant and

Spectronaut as described in the STAR Methods. The hybrid

CCRC proteome spectral library included 179,382 precursors,

113,291 peptides, 11,510 protein groups, and 9,942 gene prod-

ucts. The hybrid CCRC phosphoproteome spectral library

included 116,121 phosphoprecursors, 65,851 phosphopepti-
2 Cancer Cell 38, 1–14, November 9, 2020
des, 9,977 phosphoprotein groups, and 7,125 phosphogene

products. The proteomes (8,450 quantified protein groups) and

phosphoproteomes (47,786 quantified phosphosites) of 480

samples consisting of 145 paired T-N-P tissues, a pair of T-N tis-

sues, and 43 LM tissues, were characterized using data-inde-

pendent acquisition methods (Figures S1 and S2). These pa-

tients had a median follow-up time of 1,240 days (Table S1).

Mutational Landscape of Chinese CRCs
A median of 107 non-synonymous, somatic, single-nucleotide

variants and 7 insertions or deletions were identified in primary

tumors of 146 CRC patients (Table S1), similar to the results ob-

tained for the TCGA CRC cohort. The most frequently observed

cancer-associated mutations in this cohort were APC (65% mu-

tation frequency), TP53 (64%), and KRAS (32%) (Figure 1A),

consistent with previous studies. The clinicopathological char-

acteristics distinguished the CCRC cohort from the TCGA (Can-

cer Genome Atlas, 2012) or MSK CRC cohort (Yaeger et al.,

2018) (Figure 1B). Compared with the TCGA CRC dataset,

CCRC had a higher ratio of mCRC patients (47.9% versus

14.4%; p < 2.2E�16; Figure 1B). In addition, CCRC contained
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the highest proportion of rectal cancer cases of the three cohorts

(46.6% versus 25.5% versus 31.7%; p = 5.3E�06; Figure 1B),

consistent with previous studies that showed a high incidence

of rectal cancers among Asian populations (Deng, 2017; Sung

et al., 2019).

We found that the APC mutation frequency was significantly

lower in CCRC compared with the other two cohorts (65.1%

versus 76.9%; p = 5.3E�03 for TCGA and 65.1% versus 79%;

p = 8.1E�04 for MSK), as was the mutation frequency of TP53

compared with that of the MSK cohort (63.7% versus 78%;

p = 7.3E�04). The mutational hotspots in APC and TP53 in

CCRC were similar to those in the TCGA cohort (Figure S3A).

Furthermore, frequencies of BRAF and PTEN mutations in

CCRC were also significantly lower than in the Western datasets

(Figure 1C and Table S1). In contrast, we found higher mutation

frequencies in the PRRC2A, PPFIA4, CPD, and NURP1L genes

in CCRC (Figure S3B). Considering that the CCRC cohort was

demographically distinct from the TCGA cohort, and consisted

of more advanced cases and more cases of rectal disease (Fig-

ure 1B), we performed propensity score matching (PSM) of clin-

ical characteristics between the two cohorts for genomic feature

comparison (STARMethods; Figure S3C). Thesemutations were

preferentially found in the CCRC cohort after the PSM (Figures

S3D and S3E), indicating genetic signatures potentially unique

to Asian CRCs.

To identify genes associated with metastasis, we compared

the frequencies of genomic alterations in non-mCRC and

mCRC from the CCRC cohort. Mutation burdens in primary tu-

mors of mCRC were decreased compared with those of non-

mCRC (Figure 1D), which is also observed in non-hypermutated

CRC cases (Figure S3F). Among the most frequently mutated

genes in CRC (Figure 1C), only SMAD4 showed a significantly

higher mutation rate in primary tumors of mCRC patients (20%

versus 6.6%; p = 0.015; Table S1); XIRP2 was also significantly

highly enriched in primary tumors of mCRC patients (Figure 1E),

which has been reported to correlate with breast cancer pro-

gression (Kroigard et al., 2018).

We further applied non-negative matrix factorization to extract

mutational signatures. Four signatures were revealed in the 146

CCRC primary tumors, where COSMIC SBS 6, SBS 1, SBS 45,

and SBS 5 were identified as defined previously (Figures S3G

and S3H). Notably, the contribution rate of SBS 1 to mCRC

was significantly higher than that to non-mCRC (Figure S3I),

thereby demonstrating amore severe endogenous mutation sta-

tus in mCRC. Moreover, genes enriched for SBS 1, such as HY-

DIN, C1QB, and COL22A1, have been previously reported as

metastatic signatures of colon and breast cancers (Naba et al.,

2014; Zhang et al., 2015b) (Figure S3J). The most frequent so-

matic copy number alterations (SCNAs) showed no evident dif-

ferences between mCRC and non-mCRC primary tumors (Fig-

ures S3K and S3L). However, primary tumors of mCRC

patients exhibited a more polyclonal architecture in comparison

with that of non-mCRC patients (63% and 39%; p = 0.01; Fig-

ure 1F), suggesting the metastatic probability of mCRC in T.

Subtype Classification Based on Proteomic Data
We performed consensus clustering of 2,440 differentially ex-

pressed proteins between primary tumors and N (STAR

Methods), in order to explore whether our deep proteomes can
provide insight into cellular and molecular heterogeneity associ-

ated with CRC (Table S2). Among the 146 CCRC primary tumors,

three consensus clusters (CCs) were identified (Figures 2A and

S4A). CC1 was characterized by increased RNA processing

and DNA mismatch repair (MMR). Upregulated proteins in CC2

were enriched for extracellular matrix (ECM)-receptor integra-

tion, focal adhesion, and immune-related pathways. CC3

featured enrichment for both the upregulation of DNA replication

and metabolic pathways.

Clinicopathologic characteristics showed no significant differ-

ences among different subtypes except for pre-surgery treat-

ment (p = 0.014; Fisher’s exact test), probably due to the slight

enrichment of mCRC in CC2 and CC3. The three subtypes had

different relapse-free survival probabilities (p = 0.014; Figure 2B),

while subtyping remained an independent prognostic factor after

adjusting for tumor stage and pre-surgery treatment by multivar-

iate analysis (p = 0.017; Figure S4B). In addition, mCRC patients

in CC3 also showed the worst probability of relapse-free survival

compared with mCRC patients in CC1 and CC2 subtypes (p =

0.004; Figure 2C). By contrast, non-mCRC patients showed no

significant difference in relapse-free survival among the three

subtypes (Figure S4C), possibly due to the overall good prog-

nosis for non-metastatic CRC through various treatments. In

addition, all mCRC primary tumors across the different CC sub-

types showed distinct characteristics (Figure S4D). Specifically,

the proteins elevated in CC3 were primarily associated with the

citrate cycle, oxidative phosphorylation, and metabolic path-

ways (Figure S4E).

We then identified differentially mutated genes or SCNAs

among the three subtypes (see STAR Methods; Figure 2D and

Table S2). For genes showing differences in mutation, SCNA,

and protein levels among the three CC subtypes, we found

that mutations were significantly enriched in CC3 and rectal can-

cers (Figure 2E), consistent with the tumor-location bias of CRC

in Asian populations. Next, we found that FBXW7, HYDIN, and

HSPG2 were significantly enriched in subtype CC3 (Figure S4F).

The SCNAswere significantly deleted and proteins were upregu-

lated in the CC3 subtype of the overlapping genes (Figures 2D,

2E, and S4F). We then examined the correlations of the 295

genes with differential SCNAs and protein abundance (Fig-

ure 2D). Interestingly, most SCNA genes showed greater dele-

tions in CC3 compared with CC1 and CC2, while proteins in

CC3 exhibited higher expression levels (Figures S4G and S4H).

These genes were significantly enriched in oxidative phosphory-

lation, RNA splicing, neutrophil degranulation, and alternative-

splicing-related pathways (Figure S4I). Specifically, SCNA genes

in the 19q region were deleted with gradually increasing fre-

quency from CC1 to CC3, although the abundances of proteins

in this region showed the lowest and highest expression levels in

CC2 and CC3, respectively (Figure S4H). For example, COX6C,

associated with oxidative phosphorylation, and PTBP1 and

ELAVL1, in the alternative splicing pathway, all had lower copy

numbers in CC3, although their protein levels were significantly

higher in CC3 compared with CC1, CC2, and N (Figure S4J). In

addition, high protein abundance was correlated with poor prob-

ability of relapse-free survival for all three genes (Figure S4J),

suggesting that copy number and protein abundance are de-

coupled in poor-prognosis tumors (Myhre et al., 2013; Zhao

and Jensen, 2009).
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Figure 2. Proteomic Subtyping of CCRC and Clinical Implications for Each Subtype

(A) Consensus clustering based on differentially expressed proteins between tumor and remote normal tissues. Each column represents a patient sample and

rows indicate proteins.

(B) Kaplan-Meier curves for relapse-free survival based on proteomic subgroups. The p value was calculated by log rank test.

(C) Kaplan-Meier curves for relapse-free survival based on proteomic subgroups for mCRC. The p value was calculated by log rank test.

(D) Venn diagram illustrates the overlap of differential gene mutations, SCNAs, or proteins among three CCs.

(E) The top 10 differentially mutated genes that also showed differences in SCNA and protein levels.

(F) The expression of proteins enriched in the mismatch repair pathway (top). The correlation between methylation level and protein expression of RFC3 and

SSBP1 (bottom). Correlation coefficients and p values were calculated by the Spearman correlation method.

(G) Comparison of proteomic subtyping of non-mCRC with previous subtyping results based on RNA (Guinney et al., 2015) or Western CRC patients (Vasaikar

et al., 2019; Zhang et al., 2014). M, mCRC; noM, non-mCRC.

See also Figures S1, S2, and S4 and Table S2.
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Downregulated proteins in CC2 were enriched for the DNA

MMR pathway (Figures 2A and S4K) but showed no apparent

correlation with microsatellite instability (MSI) status (Figure 2A).

Instead of the commonly reported MMR proteins MLH1, MLH3,

MSH2, MSH3, and MSH6, we found that PCNA, RFC1, RFC3,

RFC4, and SSBP1MMR pathway proteins were differentially en-

riched and downregulated in CC2 comparedwith other subtypes

(Figures 2F and S4L). To further explore the mechanism driving

MMR, we selected 32 samples (6, 13, and 13 samples for

CC1, CC2, and CC3, respectively), based on protein expression

levels, for Illumina 850K methylation array (STAR Methods) and

found that the methylation levels of RFC3 and SSBP1 were
4 Cancer Cell 38, 1–14, November 9, 2020
significantly negatively correlated with the expression of their en-

coded proteins (Figures 2F and S4M). These results revealed

that the CC2 subtype bears a unique and non-canonical epige-

netic feature correlated with protein pattern. The subtypes iden-

tified by proteomic data were generally consistent with the sub-

typing from previous studies of the CPTAC proteome dataset

and CMS classification (Figures 2G and S6B) (Guinney et al.,

2015; Zhang et al., 2014). Notably, CC1 matched CPTAC sub-

types A and E, containing CMS1 and CMS3, respectively, and

showed relatively good prognoses as reported (Guinney et al.,

2015; Zhang et al., 2014). CC2, which similarly matched subtype

C and CMS4 (Figure 2G), showed typically worse prognosis than
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CC1 (Figures 2A and 2B), due to ECM enrichment with mesen-

chymal features. The CC3 proteome corresponded to CPTAC

subtype B, with enrichment for MSI (Zhang et al., 2014; Vasaikar

et al., 2019). However, we did not observe enrichment for MSI in

CC3. In our analyses, CC3 matched diverse CMSs (Figure 2G),

and demonstrated the worst relapse-free survival probability

(Figure 2B), illustrating the complexity of this subtype. These re-

sults may be related to the significantly greater number of meta-

static patients in our CCRC cohort than in the TCGA/CPTAC co-

horts (Figure 1B), while the divergence between CNV and protein

expression further leads to the heterogeneity, and consequently

inconsistency, in the CC3 subtype.

Phosphoproteomic Profiles Distinguished mCRC from
Non-mCRC
In our proteome subtyping, none of the three subtypes were

significantly enriched in mCRC or non-mCRC patients (Fig-

ure 2A). We found that, in total, 1,487 phosphosites were differ-

entially expressed in primary tumors and N (Table S3). We

applied consensus clustering using these differential phospho-

sites to identify sub-clusters in each CC (STAR Methods; Fig-

ure S5A). Interestingly, phosphoproteomic data distinguished

the primary tumors from mCRC and non-mCRC in each proteo-

mic subtype (p = 1.47E�5, chi-square test), resulting in classifi-

cation of six phosphoproteomic subtypes (Figures 3A, 3B, and

S5B). SC1, SC3, and SC5 were enriched in mCRC, while SC2,

SC4, and SC6 were characteristic of non-mCRC.

We performed functional enrichment analysis and found that

phosphoproteins with high expression in SC1, SC3, and SC5

were enriched in focal adhesion and adherens junction pathways

(Figure 3C). In contrast, phosphosites upregulated in SC2, SC4,

and SC6 showed more similarity in function between subtypes

and were enriched in ERBB2 signaling, endometrial cancer, an-

tigen processing and presentation, and Fc gamma R-mediated

phagocytosis pathways (Figure 3C). Specifically, phosphosites

of MHC1 predicted to participate in the antigen processing

and presentation pathway were downregulated in SC1, SC3,

and SC5 (Figures S5C and S5D), suggesting an inhibition of

T cell activation in the progression of metastasis. Moreover, up-

regulated phosphosites in the mTOR signaling and glycolysis

pathways (Figures S5D and S5E) provided pharmacological in-

sights into CRCmetastasis. Based on kinase-substrate relation-

ships from PhosphoSitePlus (Hornbeck et al., 2015), we found

mostly negative correlations between kinases and phosphosites

in SC1, SC3, and SC5, while positive correlations were increased

in SC2 and SC4 (Figure 3D). Specifically, SC6 was characterized

by negative regulation between kinases and substrates, sug-

gesting that the non-mCRC in CC3 was more like mCRC with

poor prognosis (Figure 3E). Since the phosphosite abundance
Figure 3. Phosphoproteomic Profiling in CCRC

(A) Consensus clustering of phosphoproteomic data based on the proteomic sub

(B) The distribution of mCRC and non-mCRC in each phosphoproteomic subtyp

(C) Functional enrichment for significant genes in each phosphoproteomic subty

(D) Phosphoproteomic regulation networks in the six phosphoproteomic subtype

the corresponding substrates.

(E) Distribution of Pearson’s correlation coefficients of kinase-substrate networks

box represent median and upper and lower quartiles, respectively. M, mCRC; no

See also Figures S1, S2, and S5 and Table S3.
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is potentially affected by either protein expression level or phos-

phorylation activity, an alternative method is to normalize phos-

phorylation with protein abundance. This analysis showed that

phosphoproteomic data could also distinguish between primary

tumors of mCRC and non-mCRC in CC3 (Figures S5F and S5G).

Proteogenomic Characteristics of Metastatic Tumors
For the mCRC, a high concordance between mutational profiles

was observed for primary andmetastatic tumors (Figures 4A and

4B; Table S4), regardless of the MSI status (Figure S6A).

Although primary tumors tended to havemore uniquemutations,

no obvious differences were observed in mutations among the

putative driver genes or with mCRC datasets from previous

studies (Yaeger et al., 2018) (Figure 4C and Table S4). In addition,

the most frequently mutated SCNAs showed no difference be-

tween primary and metastatic tumors (Figure 4D), whereas met-

astatic mCRC tumors exhibited a greater monoclonal proportion

compared with primary tumors (60% and 40%; p = 0.02; Fig-

ure 4E). Together, these results suggested that themetastatic tu-

mors were derived from the primary tumors or from the same

ancestral clones.

However, proteomic profiling of metastatic tumors showed

obvious differences from that of primary tumors (Figure S6B).

Specifically, metastatic tumors had more upregulated proteins

compared with normal tissue than did primary tumors (Figure 4F

and Table S4). These differentially expressed proteins clearly

distinguished metastatic tissues from primary tissues (Fig-

ure 4G). Proteins upregulated in metastatic tumors were corre-

lated with ECM-receptor interaction, drug metabolism, focal

adhesion, and tight junction (Figure 4H), while proteins downre-

gulated in metastatic tumors were enriched in metabolic path-

ways, fatty acid degradation, citrate cycle, and oxidative phos-

phorylation (Figure 4H). In each subtype, proteins that differed

in expression from normal tissues were also distinct between pri-

mary and metastatic tissues (Figure S6C). For example, proteins

upregulated in primary tumors were enriched in leukocyte trans-

endothelial migration, as well as in complement and coagulation

in CC2, but citrate cycle and PPAR signaling pathways in CC3

(Figure S6C).

Phosphosite-to-Protein Co-variation in Multiple Tissues
of mCRC
Next, we focused on 42 mCRC cases with all four tissue types

(N, P, T, and LM). Among them, 10, 21, and 11 cases belonged

to CC1, CC2, and CC3, respectively. In each case, we computed

the Pearson’s correlation coefficients of all four tissues between

each twomatched pairs of phosphosite abundances versus pro-

tein abundances and obtained an array of correlation coeffi-

cients for the 42 mCRC cases (STAR Methods). We found that
typing.

e. The p values were calculated by chi-square test.

pe.

s. The edges represent Pearson’s correlation coefficient between kinases and

in (D). The p values were calculatedwith two-tailed Student’s t test. The line and

M, non-mCRC.
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Figure 4. Proteogenomic Characteristics of mCRC

(A) The distribution of private and shared mutations in primary and metastatic tissues of mCRC.

(B) Comparison of mutation burdens between primary and metastatic mCRC tissues. The line and box represent median and upper and lower quartiles,

respectively. The p value was calculated by two-tailed Student’s t test.

(C) Comparison of frequently mutated genes in primary and metastatic tissues of mCRC in CCRC andmetastatic tissues fromMSK cohorts (Yaeger et al., 2018).

(D) Comparison of the top 15 frequent SCNAs in primary and metastatic tissues of mCRC.

(E) Clonal differences between primary and metastatic tissues of mCRC. The p value was calculated by chi-square test.

(F) Differentially expressed genes between primary (left) or metastatic (right) and remote normal tissues. Significance tests were performed by two-tailed Stu-

dent’s t test.

(G) Principal-component analysis plot of differentially expressed proteins indicated in (F).

(H) Normalized expression profiles of the differentially expressed proteins in N-T-LM tissues and their enriched pathways. N, remote normal tissue; T, primary

tumor tissue; LM, liver metastatic tissue.

See also Figure S6 and Table S4.
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the distribution of correlations was bimodal and clearly shifted to

positive values (Figures S6D and S6E) in all CC subtypes.

To look for significantly co-regulated phosphosite-to-protein

relationships among the three CC subtypes, ANOVA was used

to successfully identify 954 pairwise phosphosite-to-protein

correlations that were significantly different among the three

CC subtypes (ANOVA, BH adjusted p < 0.05). We found that

CC2 distinctly showed a greater number of negative regulatory

interactions, while CC3 and CC1 showed more positive co-var-

iations (Figure S6E). The 954 pairwise phosphosite-to-protein
correlations could distinguish between the three proteomic sub-

types for all 42 mCRC cases (Figure 5A; Table S5), and the 954

phosphosite-to-protein pairs could be classified into three clus-

ters: CC1 negative (CC1neg), CC2 negative (CC2neg), or CC3

negative (CC3neg). Metascape analysis (Zhou et al., 2019) re-

vealed that the proteins corresponding to phosphosite-to-

protein pairs in the CC3neg cluster were enriched in smooth

muscle contraction, response to wounding, LKB1 pathway,

and apoptotic execution phase. CC1neg cluster members

were preferentially enriched in LIS1 pathway, endocytosis, and
Cancer Cell 38, 1–14, November 9, 2020 7
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p75 NTR receptor-mediated signaling. Concurrently, CC1neg

cluster members were significantly involved in regulation of

mRNA metabolic process, ribonucleoprotein complex biogen-

esis, and Nop56p-associated pre-rRNA complex.

We further mapped the experimentally verified (Hornbeck

et al., 2015) or predicted (Horn et al., 2014) kinase-substrate

pairs to CC1neg, CC2neg, and CC3neg cluster members. Using

hypergeometric distribution, we selected the enriched kinases

for each cluster (p < 0.05, Figure 5A). Notably, CC3negmembers

were enriched with the maximum number of kinases, and, inter-

estingly, the three clusters shared no common upstream ki-

nases, indicating the contribution of a diversity of kinase-sub-

strate networks among the three clusters. Among the 954

significant co-variations, 14 phosphosites corresponding to 10

kinases were significantly co-regulated (Figure 5A). Among

them, 12 phosphosite-to-protein correlations, corresponding to

9 kinases (right pink box), belonged to the CC3neg cluster, while

only 2 correlations were involved in the CC2neg cluster (right

blue box). Notably, higher mutation frequencies were detected

in 5 of these 10 kinases in CC3 (Tables S2 and S5), thus suggest-

ing that the phosphosite-to-protein co-variation of kinases may

be derived from genomic variation.

Using the MCODE complex/subnetwork analytical method

(Bader and Hogue, 2003), we found five key co-varying phos-

phosite-to-protein MCODEs (hypergeometric test, p < 0.001),

which included 112 nodes and 355 edges (Figure 5B; Table

S5). Apoptosis, clathrin-mediated endocytosis, mitotic prometa-

phase, and HDAC class I pathway were the top four cooperative

MCODEs (Figures S6F–S6I) in multiple tissues of mCRC. We

noticed that transcriptional regulation by TP53 (Figure 5C) and

the LKB1 pathway (Figure 5E) were the top CC1neg- or

CC3neg-specific MCODEs, respectively. In contrast, mRNA

splicing complexes (MCODE 5) was the top MCODE in CC2neg

cluster members (Figure 5D). The experimentally verified (Horn-

beck et al., 2015) or predicted (i.e., with highest NetworKIN

score) (Horn et al., 2014) upstream kinases were also mapped.

In the CC3neg cluster LKB1 pathway (Figure 5E), two kinases,

PRKACA and PRKAA1, were also identified as members of

MCODE. Although PRKCA and PRKCB were involved upstream

of transcriptional regulation by TP53 (Figure 5C, CC1neg) and

mRNA splicing (Figure 5D, CC2neg), most kinases were not

shared within MCODEs of the three CCs.

Seven sites across four kinases, PRKCD, MAPK1, MTOR, and

PRKAA1 (Figures 5A and S6F), were found in the CC3neg cluster

in MCODE 1 apoptosis. The correlations between PRKCD-S304

or MTOR-S1166 and their corresponding proteins were distinct

for each CC subtype, and they both showed differential protein
Figure 5. Phosphosite-to-Protein Co-variation in Multiple mCRC Tissu

Pearson’s correlation coefficients of four tissues (N, P, T, LM) between matched

Hierarchical clustering analysis map of significantly changed phosphosite-to-prote

phosphosite-to-protein pairs could be classed into (A) three clusters (CC1neg, CC2

interactome network. The enriched upstream kinases (hypergeometric test, BH adju

(A), while the significant phosphosite-to-protein correlations of kinases in the heatm

co-variated MCODE complexes/subnetworks (hypergeometric test, p < 0.001). T

combined with upstream kinases. (F) Two examples, the Pearson’s correlation co

sponding protein abundances, are shown for each CC on the left. Smooth lines

(Method = ‘‘lm, linear regression’’) and the related 95% confidence intervals (gray a

upper and lower quartiles, respectively. N, remote normal tissue; P, para-carcinom

See also Figure S6 and Table S5.
or phosphosite expression profiles among the three CCs (Fig-

ure 5F). PRKCD-S304 was previously reported to be autophos-

phorylated and involved in many cancer types, and was also

found to respond to temporal lapatinib suppression (Durgan

et al., 2007; Imami et al., 2012). PKBalpha, a key regulator of

cell growth, proliferation, and metabolism, was predicted to be

the upstream kinase for MTOR-S1166. This phosphosite had

also been observed to be upregulated during EGF stimulus

and by EGF stimulus combined with MAPK inhibitors (Pan

et al., 2009). Pathway enrichment analysis showed that the pro-

teins overlapping (Table S5) between phosphosite-to-protein

co-variation pairs and genes with high mutation frequency (Fig-

ure S6J), or differential SCNA genes in the three CC subtypes

(Figure S6K), were predicted to participate in diverse pathways.

Taken together, these findings indicated that the phosphosite-

to-protein relationships across multiple tissues of a patient

showed distinct characteristics associated with proteome

subtypes.

Phosphoproteomics Profiling Provides Druggable
Targets for mCRC
Considering that protein kinases have been developed as viable

drug targets for cancer therapies (Knapp, 2018), we next inferred

kinase activities based on differentially abundant phosphosites

in the mCRC primary and metastatic tissues in each CC subtype

by comparison with N. By performing kinase-substrate enrich-

ment analysis (Wiredja et al., 2017), we found that different

CCswere enriched for distinct kinases and that primary andmet-

astatic tissues in the same CC showed different activities for the

same kinase (Figure 6A; Table S6). CDK5 showed high activity in

the primary tissue of CC1, but not the metastases of CC1 and

other CCs (Figure 6A). Similarly, MAPK1 was highly enriched in

both primary and metastatic tissues of CC3, but not in the other

CCs (Figure 6A).

For kinases with quantifiable protein levels and clinically

actionable drugs (Wu et al., 2019), we analyzed the correspond-

ing phosphosubstrate abundances among the 42 paired N-T or

N-LM tissues of mCRC (Figures 6B and 6C). In total, 251 pairs

of kinase-phosphosubstrates were found by combining our

quantitative proteomic data with PhosphoSitePlus (Hornbeck

et al., 2015) or NetworKIN 3.0 (Horn et al., 2014) (Table S6). We

observed high heterogeneity of phosphosubstrates and kinases

in different tissues and proteomic subtypes of mCRC patients

(Figure 6B). We next constructed kinase-substrate networks

for primary and metastatic tumors in each proteomic subtype

based on the Pearson correlation coefficient between each

two pairs of kinase-phosphosubstrate (Figure 6C). Positive
es

pairs of phosphosite abundances versus protein abundances were calculated.

in correlations among three CC subtypes (ANOVA, BH adjusted p < 0.05). These

neg, and CC3neg) with differentially enriched functional annotations and (B–E) an

sted p < 0.05) in three clusters are shown in the colored boxes on the left side of

ap are given in the colored boxes on the right. (B) Top five phosphosite-to-protein

he most specific MCODEs in (C) CC1neg, (D) CC2neg, and (E) CC3neg were

efficients between PRKCD-S304 and MTOR-S1166 abundances and the corre-

for corresponding protein or phosphosite abundances among different tissues

reas) are shown for each CC on the right. The line and box represent median and

a tissue; T, primary tumor tissue; LM, liver metastatic tissue.
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See also Figure S7 and Table S6.
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correlations were observed between CDK4 and its substrates in

CC1metastatic tumors, whereas no significant correlations were

found in CC1 primary tumors (Figure 6C). For MAPK3 and its

phosphosubstrates, the largest differences were found between

primary and metastatic tumors of the CC1 and CC3 subgroups

(Figure 6C).

Significant differences were also found in the kinase-phos-

phosubstrate networks between primary and metastatic tu-

mors in each proteomic subtype, and the CC3 networks

showed greater similarity to CC1 than to CC2 networks (Fig-

ure 6D). The differences in kinase-phosphosubstrate networks

between primary and metastatic tumors within subgroups were

also larger than differences observed for primary tumors be-

tween subtypes. These observations suggest personalized

and localization-specific responses to corresponding inhibitors

in clinical treatments.

To further explore the potential for drug response in mCRC

patients, we conducted pharmacological tests for three kinase

inhibitors (afatinib, gefitinib, and regorafenib) on 31 miniPDX

models, including nine pairs of primary-metastatic tumors
10 Cancer Cell 38, 1–14, November 9, 2020
and 13 other primary tumors (Zhang et al., 2018; Zhao et al.,

2018) (Figure 7A). We measured the drug response effects of

each tumor for each drug by tumor cell growth inhibition

(TCGI, %) (Figure 7B; Table S7) and determined that primary

and metastatic tumors from the same individual could exhibit

different responses to the same drugs (Figure 7B). In particular,

CCRC-0323 showed very high sensitivity to regorafenib (Fig-

ure 7B), which was explained by the mutations in the RAF1

gene (Figure S7A). However, CCRC-0323 also harbored an

ERBB2mutation, but showed no response to the ERBB2 inhib-

itor afatinib (Figure 7B). By contrast, CCRC-0397 carried no

RAF1 mutation, but was sensitive to both inhibitors. In general,

mutations were rarely found in genes corresponding to the

three kinase inhibitors in the 31 miniPDX tumors (Figure S7A),

thus excluding these patients from consideration for treatment

with the corresponding drug in current clinical practice. Howev-

er, our in vivo drug tests displayed good responses, suggesting

that phosphoproteomic readout can be potentially more sensi-

tive than the presence of mutations for indicating treatment

suitability.
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Figure 7. Kinase-Substrate Network Analysis and miniPDX Drug Tests

(A) Pharmacological tests using miniPDX models (Zhang et al., 2018; Zhao et al., 2018).

(B) Drug sensitivity results for primary andmetastatic tissues of the 18miniPDXmodels in training set. TCGI%, tumor cell growth inhibition. Mean ± SEM, n = 2 for

each group.

(C) Correlations between elastic net-predicted and observed TCGI % in the validation set of 13 miniPDX models based on kinase-phosphosubstrate edge

features. Correlations and p values were calculated by Pearson’s correlation method.

(D) The Pearson’s correlation coefficient between selected kinase-phosphosubstrate edge features and drug response (TCGI %) for afatinib, gefitinib, and re-

gorafenib in training set.

(E) Kinase-phosphosubstrate networks of selected features in (D) for the three drugs. Correlations were calculated by Pearson’s correlation coefficient. T, primary

tumor tissue; LM, liver metastatic tissue.

See also Figure S7 and Table S7.
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Discriminative Model to Guide Drug Selection
We next explored the correlations between kinase-phosphosub-

strate networks and drug sensitivity. We first constructed tissue-

specific kinase-substrate networks based on previously re-

ported methods (Sun et al., 2019; Zhang et al., 2015a). Specif-

ically, for each pair of kinase and substrate reported by Phos-

phoSitePlus (Hornbeck et al., 2015) or NetworKIN 3.0 (Horn

et al., 2014), we calculated the edge strength between the kinase

and the phosphosubstrate for both primary and metastatic tis-

sues of each patient (Figure S7B). For each kinase and substrate

pair, positive edge strength represents the same directional

change between protein and phosphosite, while negative edge

strength indicates anti-correlation (Figure S7B).

We then constructed elastic net regression models based on

the 1,696 edge strength features for the prediction of drug re-

sponses (Table S7). Eighteen tumor tissues and corresponding
drug test results were used as the training set, and the remaining

13 models were used as the validation set (Table S7). Remark-

ably, high correlations were observed between the predicted

and the observed TCGIs for all three kinase inhibitors (Figure 7C).

In total, 21, 17, and 21 pairs of kinase-phosphosubstrate edge

features were selected by elastic net in the prediction of drug

response to afatinib, gefitinib, and regorafenib, respectively (Fig-

ures 7D and 7E). Most of the selected features showed negative

correlations with afatinib sensitivity, while positive correlations

were observed between regorafenib sensitivity and the corre-

sponding kinase-phosphosubstrate features (Figures 7D and

7E). Specifically, the positive correlation between EFGR

and PTPN1-Y8 and the negative correlation between EFGR

and IRS1-S3 both contributed to the afatinib treatment response

(Figures 7D and 7E), thus suggesting that the response or sensi-

tivity to treatment of tumors is not determined by a single factor
Cancer Cell 38, 1–14, November 9, 2020 11
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nor exhibits strictly positive correlations, but rather reflects the

sum of multiple molecular characteristics evident in multi-omics

data. For regorafenib with multiple targets, the edges for RAF1,

PDGRFB, and EHPA2 all contributed to drug response, while

RAF1 contributed a predominant role in efficacy (Figures 7D

and 7E). By contrast, models based on quantitative kinase and

phosphosubstrate data showed poor accuracy in predicting

drug response (Figures S7C and S7D). These results demon-

strated the strong potential viability of kinase-phosphosub-

strates networks for prediction of drug sensitivity of mCRC

patients.

DISCUSSION

Here, we present a large-scale omics study on metastatic can-

cer, which demonstrates that proteomic patterns can distinctly

classify primary tumors of CRC patients, with the power to

discriminate potential prognostic outcomes. Particularly for

stage IV patients, this classification may also significantly

correlate with prognosis. Under current recommendations,

stage I–III CRC can be treated with a variety of therapies that

result in good 5-year survival rates. However, the progression

and survival prediction for stage IV patients represents a highly

challenging obstacle for successful treatment selection. The

relationship between proteome pattern and prognosis can

potentially facilitate the precise treatment and evaluation for

stage IV patients.

Between the two groups of patients, i.e., with and without

metastasis, the primary tumors harbored few differences in their

mutational signatures. However, we found that combined prote-

omic and phosphoproteomic analysis provides the highest ac-

curacy in distinguishing metastatic and non-metastatic patients,

based on the patterns of data derived only from primary tumors.

Moreover, proteogenomic analysis of primary tumor and concur-

rently metastatic tumor tissues revealed both similarities and

variations between them. Our data also revealed an obvious

loss of genomic mutations in metastatic tumors, which

confirmed the recent results of a pan-cancer investigation

(Priestley et al., 2019). However, we report here that the

proteome and phosphoproteome of metastatic tissue from

each individual can differ significantly from those of its primary

counterpart.

Based on omics dataset and in vivo drug testing models, we

established a machine learning model to predict drug

response. For patients without druggable mutations, we pro-

posed a strategy that exploits the protein-phosphorylation

relationship to effectively select the most suitable targeted

therapy. Promisingly, the accumulation of multi-omics data in

conjunction with efficient drug testing can establish an accu-

rate index for determining the most suitable drugs for a given

tumor type.

In summary, our multi-omics data focused on mCRC provide

the global characteristics of primary and metastatic tumors.

Based on our observations of divergence in proteome and phos-

phoproteome patterns between metastatic and primary tumors,

we found that network analysis combined with proteomics and

phosphoproteomics data can accurately reflect drug responses.

These results strongly suggest that the selection of therapies for

stage IV patients should consider these proteome/phosphopro-
12 Cancer Cell 38, 1–14, November 9, 2020
teome profiles in both primary and metastatic tissues for effec-

tive, individualized treatment strategies.
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Chinese patients with colorectal cancer (CCRC)

This study; ChangHai

Hospital (Shanghai, China)

N/A

MiniPDX models This study; ChangHai

Hospital (Shanghai, China);

Shanghai LIDE Biotech

N/A
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N/A N/A N/A
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CPTAC Cancer Proteome Confirmatory Colon Study (Vasaikar et al., 2019) https://cptac-data-portal.georgetown.edu/
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id=crc_msk_2017

PhosphoSitePlus (Hornbeck et al., 2015) RRID: SCR_001837; https://www.
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NetworKIN 3.0 (Horn et al., 2014) RRID: SCR_007818; http://networkin.info/

Experimental Models: Cell Lines

293T ATCC Cat# ATCC� CRL-11268; RRID: CVCL_1926

CCD 841 CoN ATCC Cat# ATCC� CRL-1790; RRID: CVCL_2871

Caco2 ATCC Cat# ATCC� HTB-37; RRID: CVCL_0025

Colo205 ATCC Cat# ATCC� CCL-222; RRID: CVCL_0218

HCT116 ATCC Cat# ATCC� CCL-247; RRID: CVCL_0291
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HT29 ATCC Cat# ATCC� HTB-38; RRID: CVCL_0320

LOVO ATCC Cat# ATCC� CCL-229; RRID: CVCL_0399

SW620 ATCC Cat# ATCC� CCL-227; RRID: CVCL_0547

Experimental Models: Organisms/Strains

BALB/c-Foxn1nu/Nju GemPharmatech Cat# T000521

Oligonucleotides

N/A N/A N/A

Recombinant DNA

N/A N/A N/A

Software and Algorithms

MaxQuant 1.6.2.10 (Cox and Mann, 2008) RRID: SCR_014485; http://www.coxdocs.org/

doku.php?id=maxquant:start

Spectronaut� 13 Biognosys Inc. https://www.biognosys.com/

Burrows-Wheeler Aligner (BWA) (version 0.7.15) (Li and Durbin, 2009) RRID: SCR_010910; http://bio-bwa.

sourceforge.net/

Picard (version 2.5.0) GitHub RRID: SCR_006525; http://broadinstitute.

github.io/picard/

Genome Analysis Toolkit (GATK) (version 4.0.11) Broad Institute RRID: SCR_001876; https://software.

broadinstitute.org/gatk/

Mutect (version 2) Broad Institute https://software.broadinstitute.org/gatk/

Ensemble variant effect predictor (VEP v94.5) (McLaren et al., 2016) RRID: SCR_007931; https://asia.ensembl.org/

info/docs/tools/vep/script/vep_download.html

MutSigCV (version 1.41) (Lawrence et al., 2013) https://software.broadinstitute.org/cancer/

cga/mutsig

MSIsensor (v0.5) (Niu et al., 2014) RRID: SCR_006418; https://github.com/ding-

lab/msisensor

Sequenza (version 3.0.0) (Favero et al., 2015) RRID: SCR_016662; https://cran.r-project.org/

web/packages/sequenza/index.html

GISTIC (version 2.0.23) (Mermel et al., 2011) RRID: SCR_000151; https://portals.

broadinstitute.org/cgi-bin/cancer/publications/

view/216

MatchIt R package (version 3.0.2) (Ho et al., 2018) https://cran.r-project.org/web/packages/

MatchIt/index.html

NMF R package (version 0.21.0) (Gaujoux et al., 2018) https://cran.r-project.org/web/packages/

NMF/index.html

ConsensusClusterPlus R package (version 1.42.0) (Wilkerson and Hayes, 2010) RRID: SCR_016954; http://bioconductor.

org/packages/release/bioc/html/

ConsensusClusterPlus.html

CMSclassifier (Guinney et al., 2015) https://github.com/Sage-Bionetworks/

CMSclassifier

KSEAapp (version 0.99.0) (Wiredja et al., 2017) https://cran.r-project.org/web/packages/

KSEAapp/index.html

minfi (Aryee et al., 2014) RRID: SCR_012830; https://bioconductor.org/

packages/release/bioc/html/minfi.html

Cytoscape (Shannon et al., 2003) RRID: SCR_003032; https://cytoscape.org/

Gephi (Bastian et al., 2009) RRID: SCR_004293; https://gephi.org/

R R Core Team RRID: SCR_002394; https://www.r-project.orgs

Other

N/A N/A N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rong

Zeng (zr@sibcb.ac.cn).

Materials Availability
The clinical materials, including established miniPDX models, from ChangHai Hospital (Shanghai, China) will have restrictions ac-

cording to Institutional Review Board and Material Transfer Agreement institutional policies. Other materials not specified will be

made available from the corresponding author on request.

Data and Code Availability
The raw data and processed datasets generated during this study are available at The National Omics Data Encyclopedia (NODE)

under accession OEP000729 or through the link (http://www.biosino.org/node/project/detail/OEP000729). The processed mutation

data, proteomic data, phosphoproteomic data and clinical data can be found in Table S1. Details for software availability are in the

Key Resources Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Sample Acquisition
Chinese patients with CRC (CCRC) who took colorectal cancer surgery at Colorectal Surgery Department, Shanghai Changhai Hos-

pital (Naval Medical University, Shanghai, China). We collected written informed consent from all participating patients during the

establishment of the clinical sample bank. All these patients were followed with a median time of 1,240 days. Among them, 43 met-

astatic CRC (mCRC) patients also took their hepatectomy of liver metastatic cancer at same time. In addition to primary tumor

tissues and liver metastatic tissues, we also gathered remote normal tissues (N, 5-cm-away from the tumor edge), para-

carcinoma tissues (P, 2-cm-away from the tumor edge, normal adjacent tissues), and pre-operation blood samples as

references. Each tissue specimen was collected within 30 min after resection, immediately transferred into sterile freezing vials

and immersed in liquid nitrogen, cut into 0.5 cm3 pieces under �40�C, then splited and stored at �80�C until use. As for blood sam-

ples, plasma and blood cell were sub-packaged into 500 ml per vial and stored at�80�Cuntil use. The informed consent was obtained

from all subjects. The experimental protocol was approved by Shanghai Changhai Hospital Ethics Committee (CHEC2017-235,

Shanghai, China).

To established mini patient derived xenograft models (MiniPDX models), the study protocol of clinical samples was approved by

the Institutional Ethics Committee of Shanghai LIDE Biotech. Tumor tissue acquisition was approved by the ethics committees of

each participating hospital (Changhai Hospital, Shanghai, China) and agreed to by each patient via written informed consent and

was carried out according to state and institutional regulations on experimental use of human tissues.

Cell Models
A total of 8 publicly available cell lines were purchased fromAmerican type culture collection (ATCC) by cell bank in Shanghai Institute

of Biochemistry and Cell Biology. The 293T cell line was cultured in Dulbecco’s Modified Eagle’s Medium with 10% Fetal Bovine

Serum (FBS); CCD 841 CoN was cultured in minimum Eagle’s medium with 10% FBS; Caco2 was cultured in Eagle’s Minimum

Essential Medium with 20% FBS; Colo205 was cultured in RPMI-1640 Medium with 10% FBS; HCT116 and HT29 were cultured

in McCoy’s 5A Medium with 10% FBS; LOVO was cultured in ATCC-formulated F-12K Medium with 10% FBS; and SW620 was

cultured in Leibovitz L-15 Medium with 10% FBS and 100% atmosphere. Identifiers for cell lines are in the Key Resources Table.

Animals
Five-week-old female nu/nu mice (BALB/c-Foxn1nu/Nju, T000521, GemPharmatech Co., Nanjing, China) were housed at the AAA-

LAC accredited animal facility at LIDE Biotech (Shanghai, China). All animals received human care, and all study protocols were re-

viewed and approved by the Institutional Animal Care and Use Committee (IACUC) at LIDE Biotech, and conducted in accordance

with established national and international regulations for laboratory animal protection.

METHOD DETAILS

Experimental Design
No statistical methods were used to predetermine sample size. The experiments were not randomized. The investigators were not

blinded to allocation during experiments and outcome assessment. We performed several quality-control steps to ensure the quality

of samples used in the final cohort (Figure S2A). We selected the 146 CRC individuals for final analysis from 193 collected cases. We

removed 21 cases without key baseline information, 15 cases with low protein identification due to low tumor purity (<50%), 3 cases

with poor DNA quality and 8 cases without enough tissues for protein sample preparation.
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Proteogenomic Workflow
The workflow of proteogenomic analysis for our CCRC cohort was shown in Figure S1. Accurate evaluation of tumor cellularity was

determined by the middle section of each tumor tissue block, which was resected and subjected to hematoxylin and eosin (H&E)

staining. The histological assessment of all tumor samples was accomplished by two board-certified pathologists independently

(Chen-Guang Bai, Lu-Lu Deng). All the 146 primary tumor tissues (T) were confirmed to contain an average of 76% (Range 50–

90%) tumor cell nuclei with averaged 12% necrosis (Range 2–40%). Meanwhile, 43 liver metastatic tissues (LM), 146 remote normal

tissues (N, 5-cm-away from the tumor edge), 145 para-carcinoma tissues (P, 2-cm-away from the tumor edge, normal adjacent tis-

sues), and 128 matched blood samples (BC, blood cell samples of one day before operation) were also included in the proteoge-

nomic analysis. Detailed clinicopathologic features and prognosis information were summarized in Table S1, including gender,

age, TNM stage, anatomic site, metastatic sites, survival or progression situations, and so on.

About 10�25mgwet-weight for each tissue sample or 150 ml for each blood samplewas used for DNA extraction andwhole exome

sequencing (WES). Genomic DNAwas extracted, then transported using dry ice to Berry Genomics (Beijing, China). About 20�50mg

wet-weight tissue for each tissue sample was lysed with SDT buffer (4% w/v SDS, 100 mM Tris-HCl, 0.1 M DTT, pH 7.6) (Wisniewski

et al., 2009) and stored at -80�Cuntil use for the proteomic and phosphoproteomic analyses. Totally, 330 DNA samples (146 T, 38 LM,

128 BC, and 18 CN) and 480 protein samples (146 T, 43 LM, 146 CN, and 145 CP) were used in proteogenomic workflow (Figure S1,

Table S1).

Whole Exome Sequencing
Genomic DNA were extracted from tumor or blood samples using the QIAamp DNA mini kit from QIAGEN. WES Library preparation

was performed using SureSelect XT Human All Exon V6 kit (Agilent Technologies) according to manufacturer’s instructions. Pooled

libraries were run on NovaSeq6000 (2x150 paired end runs) to achieve aminimum of 200x on target coverage for each sample library.

The raw Illumina sequence data were demultiplexed and converted to fastq files subsequently. After adaptor removal and low-quality

sequences trimming, qualified readswere used for somaticmutation detection, microsatellite instability prediction, and somatic copy

number alteration (SCNA) analysis as described below.

Somatic Mutation Detection
For single nucleotide variant (SNV) and INDEL detection, we followed the Genome Analysis Toolkit (GATK, version 4.0.11) best prac-

tice guideline for somatic short variant discovery (https://software.broadinstitute.org/gatk/best-practices/workflow?id=11146).

Briefly, we mapped qualified paired-end WES reads to human reference genome (hg19) with BWA-mem (v0.7.15-r1140). The

BAM files were subsequently reordering, sorting, adding read groups and marking duplicates using picard tools (version 2.5.0).

Then base quality score recalibration and INDEL realignment were performed using IndelRealigner and BaseRecalibrator functions

of GATK. SNVs and INDELs (insertions/deletions) were called from tumor and matched-normal pairs using MuTect2 from GATK.

Noted that blood cells were treated as normal for most of the 146 CCRC patients, and 18 remote normal tissues were used as

the normal reference for 18 individuals with no available blood cell samples (Table S1). The sequence variants were then annotated

using Ensemble variant effect predictor (VEP v94.5). The variants obtained by Ensemble VEP were filtered for protein altering events

including non-synonymous SNVs, frameshift INDELs, non-frameshift INDELs, and stop gains. Significantly mutated genes were eval-

uated by MutSigCV (v1.41), and genes with a false discovery rate (q value) below 0.05 were considered significantly mutated above

the background mutation rate.

Microsatellite Instability Prediction
To estimate microsatellite instability status for each patient, we applied MSIsensor (v0.5) (Niu et al., 2014) to compute length distri-

butions of microsatellites per site in paired tumor and matched-normal BAM files, subsequently using these to statistically compare

observed distributions in both samples. The total number of sites with sufficient data (at least 20 spanning reads in both normal and

tumor) and also the number of somatic sites were calculated and the percentage of somatic sites is nominated as MSI score. Sam-

ples with MSI score >= 20% were assigned ‘‘MSI-H’’ as recommended by the algorithm.

Mutational Signature Analysis
Non-negative matrix factorization (NMF) approach (Alexandrov et al., 2013) was implemented to infer the mutation signatures jointly

for the 146 primary tumors of the CCRC cohort. The 96 mutational contexts generated by somatic SNVs from six base substitutions

(C > A, C > G, C > T, T > A, T > C, and T >G) within 16 possible combinations of neighboring bases for each substitution were used as

input data to infer their contributions to observed mutations. The de novo detected mutation signatures were also compared to 30

known COSMIC cancer signatures (Alexandrov et al., 2013) to infer their exposure contributions.

Propensity Score Matching for Clinical Parameters
To eliminate the selection bias of patients in CCRC and TCGA databases caused by baseline demographic and clinical factors, pro-

pensity score matching (Austin, 2011) was used to balance the two datasets. Baseline clinicopathological characteristics including

age at diagnosis, gender, AJCC stage and metastatic status were fit into a multivariate logistic model, and the nearest neighbor al-

gorithm and one to one match were set in the logistic model. R package ‘‘MatchIt’’ was used for the calculation algorithm.
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Somatic Copy Number Alteration (SCNA) Analysis
Somatic copy number alteration (SCNA) analysis used BAM files that were processed in the somatic mutation detection pipeline.

These BAM files were further processed by R package sequenza (version 3.0.0) with default parameters (Favero et al., 2015). Se-

quenza calculates allele-specific copy number profiles based on a probabilistic model. Briefly, the python script ‘sequenza-utils’

firstly calculates the GC content in sliding windows from the genome reference hg19 and processes the sequencing data from

the tumor and normal specimens for genomic positions with sufficient sequencing depth (>20 reads by default) to determine homo-

zygous and heterozygous positions in the normal specimen and calculate the variant alleles and allelic frequency from the tumor

specimen. Secondly, sequenza.extract efficiently performs GC-content normalization of the tumor versus normal depth ratio,

and performs allele-specific segmentation using the ‘copynumber’ package. Third, sequenza.fit applies the Bayesian probabilistic

model to infer cellularity and ploidy parameters and copy number profiles and the results were returned by sequenza.results.

Gene-level SCNAs and significant SCNAs in the cohort were identified by Genomic Identification of Significant Targets in Cancer

(GISTIC, version 2.0.23) to determine which SCNA regions were significantly gained or lost than expected by chance with q value

% 0.1. We set up a threshold of 0.3 (-ta and -td parameters of GISTIC2) in picking the amplified or deleted regions based on the dis-

tribution of germline copy number variants. A log2 ratio cut-off of ± 0.3 was used to define SCNA amplification and deletion. We

further summarize the arm-level copy number change based on a weighted sum approach (Vasaikar et al., 2019), in which the

segment-level log2 copy ratios for all the segments located in the given arm were added up with the length of each segment being

weighted.

Subclonal Copy-Number Analysis
Subclonal copy number were identified by computing the cancer cell fractions based on the B-allele frequency CCFbi and the depth

ratio CCFri for each segment by sequenza (Favero et al., 2015). A sample-wide analysis provides the copy number state estimate for

each segment based on the total clonal contribution and the global cellularity (r) and ploidy (j) values.

Based on a previously described method (Gerhauser et al., 2018), we assume that subclones share the same ploidy but differ in

cellularity. The CCFbi and CCFri are calculated by dividing the estimated cellularity derived by the depth-ratio model rri and the B-

allele frequency model rbi with the sample-wide cellularity r: CCFbi = rbi/r and CCFri = rri/r. A bivariate Dirichlet process was

then applied to generate 2D clusters of CCFbi versus CCFri. Clusters with both CCFbi and CCFri values between 0.1 and 0.9 were

identified as subclonal clusters. Samples in which the sum of the subclonal segments represent more than 0.1% of the genome

are classified as polyclonal, otherwise are classified as monoclonal.

DNA Methylation Data and Identification of MLH1 Hypermethylation
Based onmutation statues in MMRpathways and our proteomic subtyping, 32 primary tumors tissues were selected from our CCRC

cohort for DNA methylation processing. About 10�25 mg wet-weight for each tissue sample was used for DNA extraction. Genomic

DNA was extracted, then transported using dry ice to Shanghai Biotechnology Corporation (Shanghai, China). Genomic DNA from

each sample was chemically modified and bisulfite-converted using the EZ DNA Methylation kit (Zymo Research Corp., Irvine, CA,

USA) according to the manufacturer’s instructions. According to user guide, Illumina Infinium�MethylationEPIC array BeadChip Kit

(850K, 853,307 CpG sites, Illumina, San Diego, CA) was used to generate DNA methylation profiles. R package ‘‘minfi’’ was used to

pre-process the raw array data and beta value (b) was used to represent methylation level for each probe site. Probes located within

potential promoter regions (1500 bp flanking regions upstream and downstream of Transcription Start Sites (TSSs) of all transcripts

annotated by UCSC) were examined. We next analyzed theMLH1 hypermethylated samples across the 32 primary tumors. ‘‘Hyper-

methylated’’ sample at probe level was defined as the z-score normalized beta value > 1. A sample was identified as hypermethylated

at the gene level if more than half the probes for MLH1 were labeled as hypermethylated.

Protein Extraction and Digestion
Tissue samples or cell samples were minced, lysed in SDT lysis buffer followed by 5min of heating at 95 �C and 3min of sonication (5

second on and 10 second off, power 50 Watts). The lysate was clarified by centrifugation for 10 min at 14,0003g. Then, the super-

natant was collected in new tube as whole extract and detected protein concentration using tryptophan-based fluorescence quan-

tification method (Thakur et al., 2011). Protein sample was digested by filter-aided sample preparation protocol (FASP) (Wisniewski

et al., 2009) using 10 kDa centrifugal filter tubes (Millipore). In 50mMNH4HCO3 solution at 37 �C, trypsin (Promega) was added in two

rounds. The first round was lasting 12 h with 1:50 of total protein amount, and the second round was lasting additional 4 h with equal

trypsin amount. Each peptide mixture was eluted by centrifugation and dried by speed-vac.

Phosphopeptide Enrichment
The phosphopeptide enrichment was performed using High-Select Fe-NTA kit (Thermo Scientific) according to the kit manual and

previous report (Gao et al., 2019) with some followingmodifications. In brief, the resins of one spin column in the kit were divided into 5

equal parts andmixedwith each peptidemixture from 500 mg protein dissolvedwith 200 mL loading buffer (80%ACN, 0.1%TFA). The

peptide-resin mixture was incubated for 30 min with thrice gentle blowing at room temperature, and then transferred into a home-

packed one-layer Empore-C8 StageTip (Rappsilber et al., 2007) to remove nonspecific peptides and elute phosphopeptides. The

elutes were immediately dried by speed-vac at 45 �C for mass spectrometry analysis.
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High-pH RPLC Fractionation
As for spectral library for CCRC proteome or phosphoproteome, we used hybrid spectral library generation according to Spectro-

nautTM 13 instructions (Biognosys Inc., released after June 2019) (Bruderer et al., 2015). One type of the spectral libraries was built

by peptide fractionation in order to increase the depth of protein or phosphopeptide identification. Therefore, high-pH reverse phase

liquid chromatography was used. Peptide mixtures were fractionated by a Waters XBridge BEH300 C18 column (250 x 4.6 mm, OD

5 mm) on Shimadzu Prominence HPLC System following manufacturer’s instructions (Shimadzu Scientific Instruments). Mobile

phases A and B were prepared based on previous paper (Gilar et al., 2005). As for proteome spectral library, a 97-min gradient

was set as follows, 5%–7.5% B in 2 min; 7.5%–12% B in 5 min; 12%–25% B in 40 min; 25%–32% B in 25 min; 32%–95% B in

7 min; 95% B for 4 min; 95%–5% B in 4 min; 5% B for 10 min. The eluate was auto-collected every 1 min (Except to the last min)

into 96 fractions. According to HPLC chromatogram, 30 fractions for proteome were combined by a concatenation scheme

(Song et al., 2010). As for phosphoproteome spectral library, peptide mixtures digested from 30mg proteins were used to fractionate

(�3mgpeptide per time, 5 times in total). A 85-min gradient was set as follows, 5%–7.5%B in 2min; 7.5%–12%B in 5min; 12%–25%

B in 35min; 25%–32%B in 22min; 32%–95%B in 2min; 95%B for 4min; 95%–5%B in 4min; 5%B for 11min. The eluate was auto-

collected every 2 min into 42 fractions. Next, according to HPLC chromatogram, 20 fractions were combined by a concatenation

scheme (Song et al., 2010). And then, each fractionation was dried in a speed-vac and reconstituted to enrich phosphopeptide using

High-Select Fe-NTA kit as described above. Each fraction was analyzed individually with LC-MS/MS settings as described below.

Benchmark for Nano-LC-MS/MS
The peptide retention time in the reverse phase chromatography could be converted into iRT space (Escher et al., 2012). If

accurate iRTs are provided, the shotgun analysis will be speed up significantly, and the quality of results will be increase (Sensitivity,

specificity, accuracy). To ensure calibration on difficult matrices and allow for detailed quality control readouts, we spiked equal

amounts of iRT into each shotgun run not only in data-dependent acquisition (DDA) mode but also in data-independent acquisition

(DIA) mode.

Each day for running DDA or DIA raw files, we also ran a shot of iRT alone to check chromatographic stability conveniently. The

retention time for the first m/z in iRT peptides was ensured at about 4 ± 0.5 min, and all peak widths of iRT peptides was checked

about 30 s by XcaliburTM software. As for each homemade column for running DDA or DIA raw files, we use accurately quantified 1mg

293T peptide mixture (BCA Protein Assay Kit, Thermo Scientific) to check the column pressure and column efficiency. At beginning,

column pressure was about 150 bar in buffer A (0.1% formic acid). For each 293T raw, database searching against human UniProt

database (Download on July 2017) was performed usingMaxQuant 1.5.2.8 (Protein and peptidewith false discovery rate < 0.01) (Tya-

nova et al., 2016). The average number of identified proteins, identified peptides, and average minute of retention length were 3202,

17821, and 0.396, respectively. Each standard sample was analyzed on a Thermo Scientific� EASYnLC� 1000 nanoflow LC. The

sample was resolved using 0.1% formic acid and was separated using a home-made micro-tip C18 column (75 mm x 200 mm)

packed with ReproSil-Pur C18-AQ, 3.0 mm resin (Dr. Maisch GmbH, Germany). Briefly, the sample was loaded onto a nano-C18 col-

umn and separated at a flow rate of 300 nL/min with following gradients: For iRT peptides, 0–1 min, 10% buffer B (0.1% fomic acid in

acetonitrile); 1–13 min, 10–30% B; 13–15 min, 30–45% B; 15–16 min, 45–90% B; 16–22 min, 90% B. For 293T peptide mixture, 0–

2min, 5–8%buffer B; 2–42min, 8–23%B; 42–50min, 23–40%B; 50–52min, 40–100%B; 52–60min, 100%B. DDA performed 120K

resolution MS scan and then triggered top 20 precursors (QE HF, Thermo Scientific Q Exactive HF hybrid quadrupole-Orbitrap mass

spectrometer) for 15K resolution MS/MS scans. The MS or MS/MS AGC target value was set at 3e6 with 50 ms or 1e5 with 35 ms of

max injection time, respectively.

Spectral Library
Hybrid library generation can offer a combined spectral library with both high depth (Project/sample-specific library) and high pre-

cision (DirectDIA library) (Barkovits et al., 2019; Navarro et al., 2016). Therefore, we utilized in-house generated sample-specific spec-

tral libraries created using peptide fractionation approach, individual peptide samples and repeated DDAmeasurement. Meanwhile,

high-quality and high-precision spectral librarieswere also directly generated frommultiple DIA data. In total, hybrid spectral library of

CCRC proteome created by 165 DDA runs and 564 DIA runs, while hybrid spectral library of CCRCphosphoproteome created by 143

phospho-DDA runs and 519 phospho-DIA runs. Figure S2 was summarized the details of the two hybrid libraries. The hybrid spectral

library of CCRC proteome included 179,382 precursors, 113,291 peptides, 11,510 protein groups and 9,942 gene products. The

hybrid spectral library of CCRC phosphoproteome included 116,121 phospho-precursors, 65,851 phosphopeptides, 9,977 phos-

phoprotein groups and 7,125 phospho-gene products. Spectral library generated from the DDA files was searched with MaxQuant

and built by SpectronautTM, and DirectDIA library generated by SpectronautTM as described below.

DDA and DIA Mode to Generate Proteomic or Phosphoproteomic Spectral Library
Equal amounts of iRT into each shotgun run of DDA and DIA mode. Each DDA or DIA sample was analyzed on a Thermo Scientific�
EASY-nLC� 1000 nanoflow LC. The RP chromatographic column was the same as above. The sample was loaded onto a home-

made nano-C18 column and separated at a flow rate of 300 nL/min with following gradients: For proteome in DDA and DIA

mode, 0–2 min, 2–4% buffer B; 2–58 min, 4–30% B; 58–66 min, 30–45% B; 66–69 min, 45–90% B; 69–75 min, 90% B. For phospho-

proteome in DDA and DIA mode, 0–2 min, 2–4% buffer B; 2–58 min, 4–23% B; 58–66 min, 23–40% B; 66–69 min, 40–90% B;

69–75 min, 90% B.
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Data-dependent acquisition was performed using Xcalibur software in profile spectrumdata type. A lock-massm/z 445.12002was

used for internal calibration. The spray voltagewas set at 2,300 V in positive ionmode and the ion transfer tube temperature was set at

270�C. DDA performed 120K resolution MS scan @m/z 200 and then triggered top 20 precursors (QE HF). The MS AGC target value

was set at 3e6 with 50 ms of max injection time by orbitrap mass analyzer (300-1,500 m/z). The MS/MS AGC target value was set at

1e5 with 35 ms of max injection time generated by HCD fragmentation (200-2,000 m/z) at a resolution of 15,000 @ m/z 200. The

normalized collision energy (NCE) was set at NCE 28 %, and the dynamic exclusion time was 30 s. Precursors with charge 1, 7, 8

and > 8 were excluded for MS/MS analysis.

DDA files were processed using MaxQuant (1.6.2.10) with default settings. Carbamidomethyl (C) was set as fixed modifications.

Oxidation (M), Acetyl (Protein N-term) were set as variable modifications. Reference FASTA files for human was downloaded from

UniProt on July 2017, combining with the fusion sequence of iRT (Biognosys Inc.). In phosphorylation data analysis, phospho

(STY) was also set as a variable modification. A maximum number of 5 modifications per peptide were allowed for each peptide.

Enzyme specificity was set as trypsin/P. The maximum missing cleavage site was set as 2. The tolerances of first search and

main search for peptides were set at 20 ppm and 4.5 ppm, respectively. The minimal peptide length was set at 7. The false discovery

rates (FDR) of peptide, protein and site were all < 0.01.

Data-independent acquisition was also performed using Xcalibur software in profile spectrum data type. Basic parameters were

equal to the DDA parameters described above. DIA isolation windows with variable width were decided by DDA searching results

fromMaxQuant. For proteome DIAMS runs, fragment analysis was subdivided into 27 DIA isolation windows of four different widths:

10 loop counts of 29m/zwith central m/z at 314.5, 343.5, 372.5, 401.5, 430.5, 459.5, 488.5, 517.5, 546.5, and 575.5; 11 loop counts of

28m/z with central m/z at 604.0, 632.0, 660.0, 688.0, 716.0, 744.0, 772.0, 800.0, 828.0, 856.0, and 884.0; 5 loop counts of 55m/z with

central m/z at 925.5, 980.5, 1035.5, 1090.5, and 1145.5; 1 loop count of 300 m/z with central m/z at 1323.0. For phosphoproteome

DIA MS runs, fragment analysis was subdivided into 34 DIA isolation windows of five different widths: 2 loop counts of 46 m/z with

central m/z at 423.0 and 469.0; 4 loop counts of 24 m/z with central m/z at 504.0, 528.0, 552.0 and 576.0; 16 loop counts of 19 m/z

with central m/z at 597.5, 616.5, 635.5, 654.5, 673.5, 692.5, 711.5, 730.5, 749.5, 768.5, 787.5, 806.5, 825.5, 844.5, 863.5 and 882.5;

10 loop counts of 21 m/z with central m/z at 902.5, 923.5, 944.5, 965.5, 986.5, 1007.5, 1028.5, 1049.5, 1070.5, and 1091.5; 2 loop

counts of 99 m/z with central m/z at 1151.5 and 1250.5. MS scan was also performed before each DIA cycle.

Pulsar is Biognosys’ proprietary search engine, integrated into SpectronautTM for library generation. Pulsar can search Thermo

Scientific� DDA and DIA data. Here, we used Pulsar to generate spectral libraries from both DDA (MaxQuant results) and DIA files

with default settings. Human reference FASTA files was also downloaded from UniProt on July 2017, combining with the fusion

sequence of iRT. False identifications were controlled by an FDR estimation (Cutoff 0.01) at three levels: peptide-spectrum match

(PSM), peptide, and protein group level. For phosphoproteomic DIA runs, phospho (STY) was also set as a variable modification.

DIA Mode to Get Proteomic or Phosphoproteomic Data
As above, equal amount of iRT was mixed into each shotgun run of DIA mode, and nano-LC MS/MS method ran as same as

described. In total, 480 proteome DIA runs and 480 phosphoproteome DIA runs (Figure S1) were analyzed by SpectronautTM against

hybrid spectral library of CCRC proteome or phosphoproteome, respectively. Calibration was set to non-linear iRT calibration with

precision iRT enabled. Identification was performed using 5%q-value cutoff on precursor and protein level while the maximum num-

ber of decoys was set to a fraction of 0.1 of library size. Quantity was determined on MS/MS level using area of XIC peaks with

enabled cross run normalization. For phosphoproteomic analysis, minor quantified (Peptide) grouping was set bymodified sequence

and PTM localization was activated and probability cutoff set to 0, in order to summarize phosphopeptide or phosphosite later. Phos-

phosite quantification was counted from the quantity of phosphorylation sequences by Perl script according to MaxQuant strategy.

As a result, we present the first proteome and phosphoproteome ofmetastatic CRCs, which included 8,450 quantified protein groups

and 47,786 quantified phosphosites. In order to evaluate our DIA technology, proteome and phosphoproteome samples from 7 cell

lines, 1 Homo sapiens colon normal cell (CCD 841 CoN) and 6 CRC cells (Caco2, Colo205, HCT116, HT29, LOVO, and SW620), were

also gathered for duplicated DIA data. Figure S2 were summarized the details of data in total and among different sample groups.

Consensus Clustering for Proteomic and Phosphosproteomic Data
For proteomic subtype prediction, we applied consensus clustering on 2440 differentially expressed proteins between 146 primary

tumors and paired normal tissues using ConseususClusterPlus R package with the following parameters: maxK = 10, reps = 1,000

bootstraps, pItem = 0.8, pFeature = 1, clusterAlg = "kmdist", distance = "spearman". The number of clustering was determined by

three factors, the average pairwise consensusmatrix within consensus clusters, the delta plot of the relative change in the area under

the cumulative distribution function (CDF) curve, and the average silhouette distance for consensus clusters. We selected a 3-cluster

as the best solution for the consensus matrix with k = 3 deemed to be a cleanest separation among clusters (Figure S6). We next

applied predefined signature genes to the protein expression matrix to assign prospective tumors to previously identified proteomic

subtypes (ProS A-E) from Zhang et al. (Zhang et al., 2014). We also employed the random forest predictor implemented in the R pack-

age CMSclassifier (https://github.com/Sage-Bionetworks/CMSclassifier) (Guinney et al., 2015) to assign the consensus molecular

subtypes (CMSs) to each sample based on the protein expression matrix. Using a default posterior probability of 0.5 as a threshold

for sample classification, we assigned our 146 prospective tumors to the four CMS subtypes (Guinney et al., 2015). For phosphopro-

teomic subtyping, the same parameter was used for the 1487 differentially expressed phosphosites compared with related N tissues,

k = 2 was selected for each phosphoproteomic subtype (Figure 3).
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Survival Analysis
Survival curves were generated using the Kaplan–Meier method, and the log-rank test was applied to calculate differences between

the curves. Hazard ratios (HRs) and their 95% confidence intervals (CI) were estimated for each multivariate survival analysis using

Cox proportional hazards models by the R package ‘‘survival’’.

Differential Mutations, SCNAs, Proteins and Phosphosites identification
To find mutations with differential mutational rate between mCRC and non-mCRC, or among the three proteomic subtypes, Chi’

square tests were performed and P values less than 0.05 were considered as significant. For SCNAs, proteins and phosphosites,

we performed two-sided Student’s t tests to identify significantly differenced features between primary and remote normal tissues,

or between mCRC and non-mCRC primary tissues. ANOVA test was used to identify differential SCNAs and proteins among three

proteomic subtypes or among four tissues ofmCRCpatients. Differential phosphosites among six phosphoproteomic subtypeswere

identified by ANOVA test. Benjamini-Hochberg corrected P values less than 0.05 were considered as significant.

Phosphosite-to-protein Co-variation Analysis
As for 42 mCRC cases with all four tissue types (N, P, T, and LM), we merged their protein and phosphosite data by UniProt ID. The

log2 transformed median normalized protein or phosphosite abundances were used for the following analysis. In each case, we

computed the Pearson’s correlation coefficients of all four tissues between each matched pair of phosphosite abundances versus

protein abundances using cor.test function in R. In total, we obtained an array of correlation coefficients with 13362 rows and 42

columns, corresponding to 13362 pairwise phosphosite-to-protein relationships and 42mCRC cases. For given phosphosite-to-pro-

tein pair in each mCRC case, if the Pearson’s correlation coefficient exactly equal plus 1 or minus 1, the correlation values were

removed. Which mean that only if at least 3 tissues have the protein and phosphosite abundances at the same time, the correlation

values will be remained for further calculation. Among the 42 mCRC cases, 10, 21, and 11 cases were belonging to three consensus

clusters (Figure 2) CC1, CC2, and CC3, respectively. We got 327,586 correlation values corresponding to 13362 phosphosite-to-pro-

tein pairs, where 75,089, 151,584, and 100,912 values were belonging to CC1, CC2, and CC3, respectively. Taken CC1, CC2, and

CC3 cases as three groups, 954 significantly co-regulated phosphosite-to-protein correlations (ANOVA test, BH adjusted P value <

0.05) were selected to do HCA plot and further annotations. Totally, 25,729 correlation values were corresponding to the 954 signif-

icantly co-regulated phosphosite-to-protein pairs, where 6,016, 11,963, and 7,750 values were belonging to CC1, CC2, and CC3,

respectively. Using density plot, we drew out the distribution of correlations in all and in significantly co-regulated phosphosite-

to-protein pairs (Figure S6).

The significantly co-regulated phosphosite-to-protein pairs could be classed into 3 clusters (CC1neg, CC2neg, and CC3neg).

Metascape analysis (Zhou et al., 2019) was used to do functional enrichment, and interactome analysis for the corresponding pro-

teins of the three HCA clusters by default analysis parameters. Enriched functional terms required to includeR 3 candidates, Hyper-

geometric test P% 0.01, and enrichment factorR 1.5. Top 20 significantly enriched pathways for corresponding proteins of 954 sig-

nificant phosphosite-to-protein pairs were selected (Hypergeometric test, multi-test-corrected q-values, Table S5). Interactome

analysis to networks limited containing 3 to 500 candidate proteins using BioGrid, InWeb_IM, and OmniPath databases. Top 5

MCODE complexes extracted from the interactome network formed by proteins based on the combination of the corresponding pro-

tein lists in CC1neg, CC2neg, and CC3neg clusters. The nodes in Figures S6F–S6I and 5 represented the protein components of

given MCODE complex, where each color encoded its origin. We used Gephi (https://gephi.org/) to visualize the top 5MCODE com-

plexes in Figure 5B. In each HCA cluster, only top 1 MCODE complexes were also shown in Figure 5 and Table S5. What’s more,

MCODE network components were assigned biological ‘‘meanings’’, where top three best P value terms were retained (Hypergeo-

metric test P < 0.001, Table S5). Functional enrichment analysis in Figures S6J–S6K were also done by Metascape analysis with

default parameters.

For each HCA cluster, known or predicted up-stream kinases of the corresponding phosphosites in the significantly co-regulated

phosphosite-to-protein correlationswere provided based on PhosphoSitePlus� (PSP) (Hornbeck et al., 2015) or NetworKIN 3.0 (Net-

worKIN Score > 1) (Horn et al., 2014). The enriched up-stream kinases were selected by Hypergeometric test of relative substrate

numbers in each cluster (BH adjusted P value < 0.05, Figure 5A, Table S5).

Kinase Activity Prediction
To estimate changes in a kinase’s activity, we performed kinase enrichment analysis on significantly differentiated phosphosites in

tumor compared to matched normal for each subtype by kinase-substrate enrichment analysis (KSEA) (Wiredja et al., 2017). Known

kinase-substrate site relationships from PhosphoSitePlus� (PSP) (Hornbeck et al., 2015) or NetworKIN 3.0 (Horn et al., 2014) with

score more than 1 were used as the K-S sources. A kinase score was given for each kinase based exclusively on the collective phos-

phorylation status of its substrates and transformed into z-score. For the kinase enrichment analysis, the threshold for significantly

enriched kinases was Benjamini-Hochberg corrected FDR less than 0.05.

Network Analysis
For subgroup based networks, Pearson correlation coefficient was calculated for each pair of kinase and substrate from

PhosphoSitePlus� (PSP) (Hornbeck et al., 2015) or NetworKIN 3.0 (Horn et al., 2014). For single sample based networks, kinase
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and phosphor-substrate edge features were constructed based on the correlation between each kinase and phosphor-substrate pair

according to the method previously described (Zhang et al., 2015a). The transformation is described below.

kinase; u
phospho� substrate; v

�
xu;j;k
xv;j;k

�
�> edge<u � v>k

�
xu;j;k � mu;k

su;k

:
xv;j;k � mv;k

sv;k

�

where xu;j;k represents the original value of uth kinase in jth sample from kth class, xv;j;k represents the original value of vth phospho-

substrate in jth sample from kth class, and k was set to 1 or 2, representing the T or LM tissue, respectively. In addition, mu;k =
1
nk

Pnk
j =1ðxu;j;k �mu;kÞ and mv;k =

1
nk

Pnk
j = 1ðxv;j;k �mv;kÞ are sample means of kinase u and phosphor-substrate v, and

su;k =
ffiffiffiffi
1
nk

q Pnk
j = 1ðxu;j;k � mu;kÞ2 and sv;k =

ffiffiffiffi
1
nk

q Pnk
j =1ðxv;j;k � mv;kÞ2 are the corresponding uncorrected sample standard deviation.

In Vivo Drug Response Test
To rapidly test drug efficacy in vivo, we establishedmini patient derived xenograft models (MiniPDXmodels) (Zhang et al., 2018; Zhao

et al., 2018) for 9 pairs of T-LM tissues in 9 CCRC cases and 13 non-pairs of T tissues in other 13 CCRC cases (Table S7) according to

the previous papers. In brief, fresh surgical tumor specimens were acquired from mCRC patients at Changhai Hospital. Tumor sam-

ples were washed with Hank’s balanced salt solution (HBSS) to remove mucus and necrotic tumor tissues. After morselization, the

tumor tissues were digested with collagenase at 37 �C for 1–2 h. Tumor cells were pelleted by centrifugation at 600g for 5 min fol-

lowed by removal of blood cells and fibroblasts with magnetic beads. Cells were then washed with HBSS, and then filled into

OncoVee� capsules (LIDE Biotech, Shanghai, China). Each capsule contained about 2,000 cells. Capsules were implanted subcu-

taneously via a small skin incisionwith 3 capsules permouse (5-week-old female nu/numouse).Mice bearingMiniPDX capsuleswere

treated with appropriate control or drugs (Vehicle control, Afatinib, Gefitinib, or Regorafenib). Afatinib, Gefitinib, and Regorafenib

were all administered orally, as single administration (Daily [qd]31) for continuous 7 days with a dose of 20 mg/kg, 75 mg/kg, or

30 mg/kg body weight, respectively. All these drugs were dissolved by pre-prepared in 0.5% hydroxypropyl methylcellulose

(HPMC) and 0.2% Tween-80 solution. Vehicle controls were isometric 0.5% HPMC and 0.2% Tween-80 solution and correlated

mice were treated as same way. Each treatment (Control or drugs) was done in sextuplicate capsules. After all capsules were

removed from mice, tumor cell proliferation in each capsule was measured using the CellTiter Glo Luminescent Cell Viability Assay

kit (G7571, Promega, Madison, WI, US). Tumor cell growth inhibition (TCGI) (%) was calculated using the published formula (Zhang

et al., 2018).

Drug Sensitivity Prediction Model
To find drug response associated features and build prediction models, the 31 miniPDX models were split into two datasets. The

paired 18 models were used as the training dataset, and the other 13 independent models were regarded as testing dataset (Table

S7). Elastic net (EN) algorithm is powerful to create parsimonious models from a large number of features and a relatively small num-

ber of samples, and has been successfully used to build drug sensitivity prediction models in several studies (Barretina et al., 2012;

Garnett et al., 2012). We firstly performed a pre-selection step for the kinase and phospho-substrate features based on their Pear-

son’s correlation coefficients with examined drug sensitivity in the training set, then Elastic net regression models were built for each

drug based on the selected kinase and phosphor-substrate node or edge features. These models were used to predict the drug

response of the 13 miniPDX models in the testing cohort. Pearson correlation coefficients were calculated between the predicted

drug sensitivity and examined ones to assess the prediction performance.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments and analyses can be found in the figure legends and main text above. Statistical significance tests,

including Fisher’s exact test, Chi-square test, Student’s t-test, Anova test, and Pearson or Spearman correlation test were performed

using R, as denoted in each analysis. Data in the barplot are presented as mean ± SEM (technical or biological replicates from min-

iPDXmodel). For box-and-whisker plot, the box indicates interquartile range (IQR), the line in the box indicates the median, the whis-

kers indicate points within Q3+1.54IQR and Q1–1.54IQR. Q1 and Q3, the first and third quartiles, respectively. All statistical tests

were two-sided, and statistical significance was considered when P value < 0.05. To account for multiple-testing, the P values were

adjusted using the Benjamini-Hochberg FDR correction. Kaplan–Meier plots (Log-rank test) were used to describe relapse-free sur-

vival. Significant factors were further subjected to a multivariate Cox regression analysis.
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